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Project Goal 

• Challenges:
Massive integration of solar PV generation makes it prohibitively difficult to 
perform accurate transient/dynamic analyses:

• Exhaustive physical models of all subsystems
• Astronomical contingencies and solar generation scenarios

• Our solution:
Ultra-scalable modeling and analytics of both transient and dynamic behaviors 
of power grids with solar PVs at all grid levels by exploiting the physics-aware 
machine learning:

• Accurately represent system behaviors at all levels
• Identify security risks under infinite PV scenarios in grid operations
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Solar PLUS Overview

The proposed project includes three main parts:
1) Physical model library 
2) AI-enabled scalable modeling
3) AI-enabled scalable analytics
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Physical Model Library

• Goals: a high-fidelity model library of BTM 
PV and loads based on real-world system 
information

• Accomplishment: Validated library with 10+ 
types of load and PV models

Benefits: 
• Provide a substantial coverage for the dynamic 

models of the BTM generations and loads under 
different simulation scenarios

• Effectively tackle the distribution system data-
insufficiency problem by serving as a high-
fidelity training data synthesizer for data-driven 
modeling development. 
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Scalable Subsystem Modelling via Neural ODE

• Goal: 

Develop an advanced Neural ODE model to accurately track 
continuous system operational states under missing/noise data.

• Variational Stochastic Differential Networks (VSDN) 
model :

• Generates continuous state trajectories from discrete data 
samples. 

• Generative model: can recurrently predict the future values 
of the sequence.

• Inference model: filters out the noise and shares the ODE 
and drift functions.

[1] Liu, Yingru, et al. "Continuous-time stochastic differential networks for irregular time series modeling." Neural Information Processing: 28th International Conference, ICONIP 2021, Sanur, Bali, 
Indonesia, December 8–12, 2021, Proceedings, Part V 28. Springer International Publishing, 2021.
[2] De Brouwer, Edward, et al. "GRU-ODE-Bayes: Continuous modeling of sporadically-observed time series." Advances in neural information processing systems 32 (2019)

Fig 2.2: Block diagram of the filtering 
inference model used for experiments [1] 
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% noise % missing data RMSE MAE MAPE

0% 0% 0.0097 0.0042 0.0201

30% 0.0414 0.0124 0.0610

50% 0.0586 0.0168 0.0973

1% 0% 0.0122 0.0074 0.0271

30% 0.0421 0.0152 0.0669

50% 0.059 0.0192 0.1021

5% 0% 0.0381 0.0270 0.0848

30% 0.0575 0.0344 0.1313

50% 0.0695 0.0361 0.1523

Experimental Results

Fig 2.2: Topology of the SETO 1001-bus 14-DG system

Experiments were performed on SETO 1001-bus 14DG microgrid system, 
developed by SBU team.

Table 2.1: Error performance metrics of VSDN model on 1001-bus data
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Experimental Results

• Predicted mean of node voltage trajectories of node 632 of 1001-bus data for different 
scenarios

No missing samples, no noise 30% missing samples, 1% noise 50% missing samples, 5% noise
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AI-enabled scalable analytics: Neuro-Reachability

8

State

Time

How to verify uncertain dynamics 
with data-driven system models?

Real dynamics(Measurements)

Learned dynamics

(ODE-Net model)

Reachset

Neuro-Reachability: conformance-
empowered reachable dynamics

𝑡 − Δ𝑡 ℛ𝑙𝑖𝑛𝑒𝑎𝑟

Linearizatio

n error ℛ𝑒𝑟𝑟

𝓡(𝒕)

Neural 

error ℛ𝑁𝑁

𝓡𝒄(𝒕)

Real trajectory 

measurements

[𝑡 − Δ𝑡, 𝑡]

Data-Driven Formal Verification



Funded by:

This presentation may have proprietary information and is protected from public release.

Experiments and Validation

• Test system: 1001-bus transmission-distribution system

• 7 distribution grids and 14 IBRs

• Each IBR has a double-loop droop controller

• Grid 6 and 7 are modeled by ODE-Net

• Reachable set under 10% uncertainty from each PV.

ODE-Net-enabled neuro-reachability conforms with the model-driven 
reachable sets ➔ A data-driven tool for verifying power grid dynamics 
with both renewable uncertainties and unidentified subsystem models

System frequency          PV output voltage

Without fault Under the short-circuit fault

PV output power            PV output voltage

𝑃
𝑃
𝑉
5
p
.u
.
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AI-enabled scalable analytics: Neuro-Awareness
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How to track dynamics of the system 
with unidentified subsystems?

Neuro-Awareness: Data-driven 
dynamic state estimation(DSE)

Physics-based model Data-driven model

• Neural dynamic state estimation (Neuro-
DSE) for Networked Microgrids with 
partially unidentified subsystems by 
integrating ODE-Net into Kalman filters.

• Complete physics model of the whole 
systems may not always be attainable

Contributions:

Challenges:
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Experiments and Validation

• Test system: 33-bus microgrid system

• 5 grid forming based IBRs

• Each IBR has a double-loop droop controller

• Microgrid 4 is modeled by ODE-Net

• ODE-Net under 20% uncertainties of DER power input.

Simulation validates the effectiveness of Neuro-DSE under 
different noise levels
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Data-driven system

Physics-based subsystems

True value Measurement Neuro-DSE

State trajectories of current control signal under different noise levels

(a) High noise (b) Low noise
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Integrating Learning and Physics based Computation 
for Fast Online Transient Analysis

• Goal: to accelerate the simulation of full power system 
transient trajectories. 

• Key: One predictor is trained for each generator.

Replace the time-consuming dynamic computation of 
the generators with trained predictors

• Retain the time-efficient algebraic computation of 
solving AC-PF

• Key Advantages

• Scalability : independent complexity 

• No re-training: agnostic to changes 

• Flexible training strategies:– joint, local, and 
singular – allowing different trade-offs between 
offline training complexity and online testing 
accuracy.
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Fig. 2: A High-level system diagram of the neural-physics
hybrid model. Each generator is represented by aNN predictor
model. All the load buses (including those with zero load) are
represented by the system-wise AC-PF model.

neural network (NN) architecture for a generator i is depicted
in Fig. 1. We note that c and h are the LSTMs’ hidden states
and are updated at each time.

B. Physical Model: AC Power Flow

While Fig. 1 depicts the architecture of one generator’s
predictor, the other generators’ predictors share similar archi-
tectures. As shown in Fig. 1, at every iteration, the algebraic
variables z are computed based on the AC-PF solution given
the latest generator state variables output by the predictors.
Note that, a) this step uses the predicted generator states x for
all the generators, b) the AC-PF is solved for the entiresystem
and generates the algebraic variables z for all the buses, and c)
each generator’s predictor then takes only the inputs it needs
— its own states and its neighboring bus’ algebraic variables
— to predict its states for the next time step. As such, the
dynamic model of the entire power system is represented by
a hybrid NN-ACPF model: each generator is represented by
a NN that captures its dynamic model, and they are then
connected by an AC-PF model that represents the entire power
system. A high level system diagram is depicted in Fig 2.

C. Training the Predictors: Jointly, Locally, and Singularly

The predictors in the NN-ACPF model are trained based on
a data set of simulated trajectories of the power system. The
offline trained predictors are then utilized for online dynamic
simulation of new/unseen cases. For a dynamic trajectory

of a generator i , denoted by x i = [x i ,1, x i ,2, ..., x i ,T ], the
training labels are the state variables at the next time steps:
yi = [yi ,1, yi ,2, ..., yi ,T − 1], where yi ,t = x i ,t + 1. We employ
the RelativeMean Square Error (RelativeMSE) as the training
objective L i over the NN parameters ✓i :

L i (ỹ;✓i ) =
1

D

DX

k = 1

P T − 1
t = 1 (ỹ

(k )
i ,t − y

(k )
i ,t )2

P T − 1
t = 1 (y

(k )
i ,t − y

(k )
i )2

(6)

where ỹ is the predictor’s output, D is the dimension of yi ,t ,

and y
(k )
i is the mean of y

(k )
i ,t over t for a single trajectory.

As all the generators’ predictors are coupled by the AC-
PF solutions at each time step during testing, one predictor’s
output at a time step will be fed back not only directly into the
inputs of itself, but also indirectly into those of all the other
predictors via AC-PF. Based on the principle that predictors’
training should match how they are used in testing, all the
generators’ predictors should ideally be trained jointly. We
indeed develop such a training procedure which we term
joint training. Specifically, the losses for all the predictors
are computed based on Algorithm 1. The losses thus reflect
the joint performance of all the predictors interacting via AC-
PF. Backpropagation is then performed for each predictor. As
such, the training for all the predictors are performed in a
coupled and “synchronous” fashion.

We next discuss an alternative to this joint training ap-
proach, termed local training. Instead of training all the
predictors in sync, we decouple their training processes to
be independent to each other. Specifically, when training the
predictor of generator i , instead of relying on other generators’
predictor outputs to solve AC-PF, we utilize certain ground
truth data of the simulated trajectories. To clarify the ground
truth data used, we introduce another key characteristic of
this local training as follows: Instead of solving the AC-PF
for the entire power system, for a generator i , we can limit
the perspective of AC-PF to some local system around the
generator. Specifically, the ground truth data at the boundary
buses of this local system are used as input to solving the
local AC-PF. As such, each generator’s predictor is trained
independently without dependence on each other’s outputs.

One key advantage of local training is that it allows
flexible control of the computational complexity and hence
the raw time of training. In particular, a) the training of all
the predictors do not have to be done jointly, but fully in
parallel, and b) the size of the local system for training each
predictor can be flexibly tuned, and can thus greatly reduce
the complexity of AC-PF. Understandably, there is a trade-
off between the training time and the testing performance of
the trained predictors: the smaller the local system, the faster
the training but also the less accurate the trained predictors
during testing. The framework of local training thus provides
a flexible tool for choosing an acceptable trade-off.

An extreme case of this trade-off is shrinking the local
system to just a single bus of the generator. In this case, there
is simply no AC-PF computation, and the ground truth of
the neighboring bus is directly fed into the predictor during
training: In Fig 1, this means that the ground truth data of the
algebraic variable inputs z are used, thus completely bypass-
ing any AC-PF. We term this extreme case singular training.

Iteratively alternates between calling all 
the trained predictors, solve AC-PFs and 
update inputs collectively.
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Performance Evaluation
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Fig. 3: Schematic diagram of the IEEE 16-machine 68-bus
system. The subsystem to be investigated is in the shaded
area, including 2 generator buses and 2 load buses.

We note that such singular training exactly corresponds to the
method we developed in our prior work [8].

Finally, we note that the use of the trained predictors during
testing is always the same (cf. Algorithm 1) regardless of how
they are trained (jointly, locally, or singularly).

IV. CASE STUDY AND DISCUSSION

A. Data Generation

We perform time-domain simulations to generate system
trajectories with a software tool EPTOOL that is based on
the Power System Toolbox (PST) [9]. The simulations are
performed on the New York/New England 16-generator 68-
bus power system (cf. Fig. 3). The generator dynamics are
modeled and simulated with full control schemes, i.e. turbine
governor, excitation systems, and power system stabilizers
(PSSs). The load buses contain 50% of constant current load
and 50% of constant impedance load. We then introduce
random N − 2 contingencies to the system which would cover
most of the potential contingencies in practice. Each con-
tingency consists of double permanent 3-phase transmission
line faults at either of the two terminal buses of the faulted
lines. We adopt the fault patterns in a practical power system
[10]: The fault duration follows a normal distribution with a
mean value of 100.0ms (6 cycles) and a standard deviation of
11.11ms. Each trajectory is simulated with a sampling period
of 0.002s for a total length of 1.4s, and hence contains 700
time steps. The two faulted lines are then set as off-service
after the faults are cleared at near and far ends of the lines. In
total, we simulate 2, 460 N − 2 contingencies and collect the
simulated trajectories for learning the generators’ predictors.
The data set is split randomly with 1, 600 for training, 400
for validation and 460 for testing. In this paper, we focus on
a 4-bus subsystem (cf. the shaded area of Fig. 3): generator
1 located at bus 53, generator 8 located at bus 60, load bus 2
and load bus 25.

Singular

Local

Joint

Singular

Local

NN Physical

Fig. 4: Training strategies for the 4-bus subsystem.

B. Training and Implementation

We employ the three training strategies (cf. Section III-C):
joint, local and singular. Specifically, for joint training, AC-PF
issolved for the4-bussubsystem, treating therest of thepower
system as known boundary conditions. The two generators’
predictor training are coupled via the 4-bus AC-PF. For local
training, each generator’s predictor training utilizes AC-PF of
only the 2-bus local system that includes the generator bus and
its neighboring load bus(es) (i.e., buses 53 and 2 for generator
1, and buses 60 and 25 for generator 8). For each generator’s
training, the ground truths of the physical quantities other
than its 2-bus local system are treated as known boundary
conditions. For singular training, no AC-PF is performed, and
the ground truths of the physical quantities other than those
of the two generator buses are treated as known boundary
conditions. A schematic of these three training strategies for
the 4-bus subsystem is depicted in Fig. 4.

For all the generators’ predictors in all of the above training
strategies, we use the same LSTM-based architecture (cf. Fig.
1) with the same set of hyperparameters for training.

C. Numerical Experiment Results

As noted at the end of Section III, during testing, the
performance of the predictors are always evaluated in the
same way, following Algorithm 1, regardless of the strategies
(joint, local, or singular) employed for training the predictors.
Specifically, a) Generator 1 and Generator 8 are replaced by
2 predictors, respectively, and b) AC-PF is iteratively solved
for the 4-bus subsystem connecting the 2 generators, treating
the rest of the power system as known boundary conditions.

To evaluate the performance of the trained predictors, we
employ the metrics of Root Mean Squared Error (RMSE) and
Relative RMSE (with the same variables as in (6)):
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1
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We note that Relative RMSE can provide a fair evaluation for
quantities of different units. We summarize the testing RMSE
and Relative RMSE in Table I for different training strategies.
We see that predictors from joint training performs markedly
better than those from local training, which again performs
significantly better than those from singular training.

A representative sample of the achieved performance is
plotted in Fig. 5, in which the trajectories of the three state

68-bus 16-generator system. 

J. Li, Y. Zhao, and M. Yue, “Integrating learning and physics based computation for fast online transient 
analysis,” Proc. IEEE Conference on Innovative Smart Grid Technologies (ISGT), 2023. 

• We simulated 2,460 N − 2 
contingencies in a 68 bus 
system, collected the 
simulated trajectories. 

• Excellent performance in 
both accuracy and 
computation speed is 
demonstrated. 


